Blog
Cos'è Power BI? Una guida per principianti allo strumento di visualizzazione dati di Microsoft.Cos'è Power BI? Una guida per principianti allo strumento di visualizzazione dati di Microsoft.">

Cos'è Power BI? Una guida per principianti allo strumento di visualizzazione dati di Microsoft.

Alexandra Blake, Key-g.com
da 
Alexandra Blake, Key-g.com
11 minutes read
Blog
Dicembre 10, 2025

Inizia con использовать Power BI Desktop per connettere dati, enable una licenza, e crea il tuo primo dashboard. Questo inizio pratico mostra come le visualizzazioni trasformano i numeri in informazioni utili.

Power BI gestisce complesse dataset across области come vendite, operazioni e логистики, trasformando indicatori in visual che supportano il processo decisionale per i team.

Keep a viewскриншот del tuo report iniziale per documentare i progressi e guidare i membri del team mentre iteri.

Connettersi a azure fonti di dati e pubblicare nel servizio Power BI; utilizzare embedded visuals in applicazione per estendere l'analisi al di là della tua organizzazione.

Trasforma i dati con Power Query per convertire pulisci, unisci e modella i dati; per ad esempio, standardizzare le date e calcolare nuove metriche per illustrare tendenze.

La sicurezza è fondamentale: implementare politiche che rafforzino la sicurezza e la governance; configurare la sicurezza a livello di riga, le autorizzazioni e gli audit per proteggere i dati e mantenere l'integrità sicurezza.

Licensing e condivisione: Il licenza il modello include piani gratuiti e Pro; enable collaborazione pubblicando nel servizio e condividendo report con colleghi e stakeholder.

Man mano che cresci, concentrati su aree come la logistica, le vendite e le operazioni; inizia con un piccolo set di elementi visivi che raccontino una storia chiara attorno ai показатели, quindi espandi a dashboard e report che supportino le decisioni quotidiane.

Funzioni principali di Microsoft Power BI per principianti

Start by connect to a data source e преобразовать данные from tables (таблиц) into visuals your team can explore with ease, using the easy-to-use интерфейсом. If you need русский language, switch the UI to русский; then verify your license and contact the account admin to ensure the нужные access for those who will view or edit reports. This approach saves времени and boosts эффективности for малому teams.

Il workflow si concentra su queste azioni: connetti, trasforma, modella, visualizza, pubblica e aggiorna. Lavora con varie fonti di dati per creare un'unica fonte di verità che aiuta a capire i dati e rispondere a domande aziendali. Questi passaggi rendono anche semplice configurare dashboard che gli stakeholder possono comprendere rapidamente, sfruttando l'interfaccia scelta e il futuro, ove necessario.

Funzione Cosa fai Notes
Connetti a fonti di dati Connettiti a Excel, SQL Server, servizi cloud e altre fonti per estrarre dati da таблиц Inizia con alcune таблиц per mantenere leggero il modello
Trasforma e modella i dati Usa Power Query per pulire, filtrare e trasformare i tipi di dati Mantenere i passaggi piccoli e ripetibili per chi si avvicina per la prima volta al BI
Dati del modello e relazioni Definisci le relazioni tra tabelle, progetta uno schema a stella semplice e aggiungi misure Utilizza misure chiare per migliorare la leggibilità
Crea visualizzazioni e report Sviluppa carte interattive, grafici, tabelle e mappe; abilita il drill-through e il cross-filtering Scegli tipi di visual che supportino la storia; prova varie visual.
Pubblica, condividi e collabora Publish to Power BI service, manage access via account, and share with teammates Respect license and trademark guidelines; use contact to coordinate approvals
Refresh and governance Schedule data refresh (времени) and monitor dataset health; set alerts Keep commissioned dashboards up-to-date for those business units

This foundation supports русский and англоязычным teams alike, enabling explore, connect, and превращать insights into action with confidence.

Connect to data sources: importing, refreshing, and scheduling updates

Connect to a primary data source in the Power BI service, then настройка a refresh schedule to keep dashboards current across мобильных устройств and версий продукта. This approach delivers more reliable analytics for бизнес-аналитики and helps meet contact with stakeholders by keeping data fresh without manual imports.

Import data from видов sources: файлы (Excel, CSV), relational databases (SQL Server, Azure SQL), and online сервисы (SharePoint Online, Dynamics 365). In the сервис, choose Import to load данные into models (модели) and start exploring their relationships; для real-time needs, DirectQuery lets you read данные directly from the source через программное соединение. You can manage these steps через интерфейсом Power BI and tune imports to fit your workflow like a tailor for campaigns and operations.

Configure credentials securely and set a refresh frequency (daily, hourly) with a suitable time zone. Use the interface to manage расписания and enable contact notifications so the analytics team (аналитикам) stays informed when a refresh fails. Also enable data source monitoring in the сервис, чтобы maintain visibility across datasets and ensure данные remain aligned with expectations.

To tailor кампаний логистики, create parameterized queries and use dataflows to merge источников into a unified data fabric. This supports innovation in модели и задач бизнес-аналитики, and you can write заметки and M-код via the interface to refine the data model. Explore how different виды источников можно связать в one view, and keep a page in the productе that shows refresh history for quick review.

Model your data: relationships, data types, and measures

Model your data: relationships, data types, and measures

Begin with a совместная approach: model основных facts and dimensions as a star schema, then map relationships that reflect business rules. Link the fact table to dimension tables using keys, set cardinality one-to-many, and choose cross-filter direction based on your reporting needs. This setup minimizes времени spent debugging relationships and helps with анализом across the набор of reports and dashboards you’ll build for рабочие users and executives alike–like product teams and paid приложение. To попробовать this approach, define the нужные relationships first, then validate with a request from a sample dataset to verify results and illustrate смирнова as a real-world example.

Data types and consistency matter. Define fields with clear types: numeric (integer, decimal), string, date/time, boolean, and optional binary. Keep date/time as a true date type to enable time intelligence. Maintain consistency across sources in the области обработки to simplify выгружать data to downstream systems. When your setup targets a scalable, enterprise-scale deployment, aligning data types makes the dataset available everywhere, usable by product teams and paid приложение, using the same conventions across teams, regions, and data sources. This helps every part of the workflow–from data ingestion to visual analytics–stay reliable.

Measures anchor insights. Keep the logic in measures rather than embedding it in calculated columns, so visuals adapt to filters everywhere. Use DAX with CALCULATE, FILTER, and ALL to shape context; expose a core set of metrics (TotalSales, TotalCost, Profit, CustomerCount) that you can reuse across visuals and dashboards using the same logic. Document measure names and purposes to aid команда and смежные области в проекте, ensuring the analytics layer remains scalable for enterprise-scale use cases. The result is a product-ready analytics layer that supports как совместная работа across regions and apps, available everywhere.

  1. Model essentials: create a 1 fact table (e.g., FactSales) and 3–5 dimension tables (Date, Customer, Product, Geography). Define keys (SalesID, DateID, CustomerID, ProductID) and set up relationships with correct cardinalities. Use surrogate keys where sources vary to keep набор table stable. Test with a sample customer like смирнова to validate joins.
  2. Enforce relationship behavior: default to single-direction cross-filter; enable bidirectional filtering only when business rules demand it. Build visuals that slice by Customer and Date to ensure consistent filtering across области обработки.
  3. Define core measures: TotalSales, TotalCost, Profit, and CustomerCount. Implement in a dedicated measures table and reuse across reports. Example: TotalSales = SUM(FactSales[SalesAmount]); Profit = TotalSales – SUM(FactSales[Cost]); apply region or product context with CALCULATE (using) to keep results accurate.
  4. Validate with a request: simulate a business request to show revenue by month for a paid product across regions; verify the output matches expectations and adjust relationships if needed to maintain reliability.
  5. Governance and deployment: document naming conventions and maintain a набор of core metrics; design for scalable, enterprise-scale deployment so the model can be reused by multiple product teams and коллеги across environments, ensuring accessibility and consistency everywhere.

Build interactive visuals: charts, maps, and drill-throughs

Build interactive visuals: charts, maps, and drill-throughs

Create a compact dashboard with three interactive visuals: a bar chart showing total revenue by category, a map of regions, and a drill-through page for city-level details. The интерфейс remains clean and responsive, формирует результаты о бизнес-показателях через информационных источникам, and обеспечивает access для разных команд. Add consistent labeling, tooltips, and cross-filtering to support questions, exploration, и работу без задержек.

Charts should deliver clear signals: use a bar chart for total by category, a line or area chart to show trends, and a donut for share of segments. Tie slicers to queries so each interaction updates all visuals in real time. Keep the license constraints in mind: if you publish beyond the organization, verify access levels and licensing caps, чтобы не превысить capacity и ограничения панели обработки.

Maps enhance geographical perspective: a filled map highlighting regional distribution helps identify hotspots and gaps. Use different shades for density and annotate key regions with data labels. Enable drill-through so clicking a region opens a page with city-, district-, or store-level metrics, что позволяет быстро access к detailed results without leaving the dashboard. Connect the map to источникам данных through stable queries to minimize latency and ensure достууа к данным.

Drill-throughs unlock depth: build a dedicated drill-through page, add primary fields (region, city, or store) as the drill-through filter, and include a back navigation control. On the drill-through page, present a focused set of visuals that summarize leistungskennzahlen (KPI) for the selected item and show associated metrics from different панелей. This approach supports questions by letting users jump from high-level views to granular insights with a single click. Use clear titles and tooltip hints to guide interpretation.

Performance and governance matter: optimize queries to reduce load times, monitor capacity usage, and ensure the licenza aligns with sharing needs. For shared reports, place visuals on panels that render well on desktops and mobile devices, and keep data sources stable to avoid frequent refresh failures. If you need to capture user input, consider a write-back workflow with a complementary tool rather than forcing data changes inside the BI model, and document access protocols for и вопросы (questions) from stakeholders. Maintain a concise data lineage to show источникам and media teams how the results were formed.

Accessibility and reuse: design with access in mind, so stakeholders from different departments can view interattivo visuals without friction. Provide различные views–summaries for executives and detailed panels for analysts–so teams can consume information efficiently. Use dashboards as a baseline, then extend with additional pages or media embeds to reach broader audiences while preserving data integrity and interactivity.

Publish, share, and collaborate: reports, dashboards, and permissions

Publish reports to a secured workspace and roll out an app for distribution. Create a dedicated рабочий workspace for teams (рабочих) and assign roles: Admin, Member, Contributor, and Viewer. Schedule data refresh times (время) to keep дашборды current, and document the data source (source) and the tables (таблиц) feeding each report. Enforce row-level security (RLS) and other access controls, using безопасностью as a guiding principle. This setup supports data-driven decisions while handling сложные datasets across platforms (platforms) and within the fabric of your data stack (fabric). For consulting teams, adapt these patterns to the продукте governance and extend дашборды that serve различных видов users, ensuring clarity and accountability at every layer.

Share through apps rather than public links. Publish дашборды to the organization’s apps, assign access via Azure Active Directory groups, and enforce viewer or build permissions per report, dashboard, and dataset. When someone needs access, they submit a request (request) and the owner approves; use expiration or revocation policies to limit exposure. Remind users to view content in their браузере and rely on the platform’s audit logs to verify who opened what, while keeping media and attachments aligned with data governance.

Collaborate with built-in comments and Teams integrations, linking to media assets and notes. Keep a data-driven context by attaching explanations of calculations and data transformations to ясные дашборды across видов audiences on different platforms. Store technical notes in a central location to preserve the fabric and ensure consistent interpretation of metrics, calculations, and visualizations across the platform.

Define explicit permissions: viewers read-only, contributors can edit, admins manage permissions. Enable row-level security to tailor data access by user, and manage dataset credentials and gateway settings in the Настройки to avoid disruptions. Use a data fabric approach to connect to source data across their platforms, maintain a catalog of таблиц, and track data lineage. Regularly audit access and alert on unusual activity to protect безопасной data usage and uphold compliance across the platform.

Adottare questa rapida checklist: standard di governance dei documenti, stabilire una struttura di area di lavoro chiara, applicare RLS, pubblicare un'app, configurare regole di condivisione, abilitare l'aggiornamento pianificato ed eseguire revisioni di accesso trimestrali. Target metriche come un ciclo di revisione di 90 giorni, 2–3 proprietari per app e un catalogo mantenuto di dataset e fonti. Prima del rollout su larga scala, testare le autorizzazioni nel browser (браузере) con utenti rappresentativi per validare che l'esperienza corrisponda agli esiti guidati dai dati previsti, in linea con gli obiettivi di consulenza, prodotto e piattaforma.

DAX basics for beginners: quick measures and calculations

Stabilire una baseline dei costi end-to-end creando una singola misura che somma le расходы attraverso tutte le tabelle pertinenti. Это начало для крупному организации, которое обеспечивает доступ к информации, intelligence, который используется аналитиками и transformирует подход к результатам. Iniziare con una regola semplice: Costi Totali = SUM('Costi'[Importo]). Prototipare in excel per convalidare la logica prima di implementarla in Power BI.

Next, add quick measures to capture variations: Cost Per Unit = DIVIDE(SUM(‘Costs'[Amount]), SUM(‘Sales'[Units]), 0). This reveals efficiency across streams. Use excel-like experimentation at the начало to test logic, then translate to DAX in Power BI. В режиме, apply department or date filters with CALCULATE to isolate costs by region or product.

Sfrutta l'intelligenza temporale per trasformare показатели e аналитика. Un totale corrente dei costi supporta показатели e аналитика, mostrando come результаты si accumulano nel tempo. Crea: Costi Cumulativi = CALCULATE(SUM('Costs'[Amount]), FILTER(ALLSELECTED('Date'[Date]), 'Date'[Date] <= MAX('Date'[Date])))

Pubblica queste misure rapide come soluzioni leader del settore che migliorano i показатели e l'аналитика in tutta l'organizzazione. Come l'интегратор dei dati, colleghi le fonti a Power BI, garantendo un flusso end-to-end dai расчётов alle visualizzazioni, stabilendo начало per decisioni guidate dall'intelligenza ripetibili nell'organizzazione.