Recommendation: Configure Screaming Frog to run focused crawls from your homepage with a crawl depth of 3–4 pages and enable internal linking analysis. Export the first crawl results as CSV, then validate http status codes and canonical tags for the most important pages. This first pass will yield actionable data and quick wins for your SEO workflow.
Set alignment with real user access: use googlebot as the user-agent, enable JavaScript rendering only when you need to index client-rendered content, and decide whether to crawl subdomains. In this pass, collect fields like URL, http code, title, meta description, H1, and canonical. analyze how pages will be seen by user and search engines, and ensure the content you’re getting matches what you expect. If you cant render JavaScript, compare non-rendered results to rendered ones to spot hidden pages and plan fixes.
実行。 comparison between this crawl and the previous one to surface changes in health, including newly found 404s, redirects, or missing metadata. For each item, export a report that includes URL, code, title, and status, and note where pages were moved or renamed. This helps you decide fixes without guessing and keeps your team aligned with concrete data.
Link Screaming Frog with integrations such as Google Analytics, Search Console, and your CMS to enrich data. The export file can feed dashboards, while code snippets automate checks for http status anomalies and broken internal links. Getting this data continuously will help your team act quickly and measure impact across changes.
For access control, limit export sharing to a single username with appropriate rights and store reports in a shared repository. Then run weekly crawls, focusing on new content and on pages flagged during the previous run. Hold a quick review with stakeholders after each run. The health score and actionable items from each export guide fixes, re-crawl, and verification, while a comparison over time shows how well optimizations perform on metrics like crawl depth, 4xx incidence, and page load dependencies.
Crawl, Audit, and Identify Duplicate Content: Practical Workflows

Run a full crawl with your tools to establish a baseline and flag duplicates early, then proceed with targeted audits.
-
Crawl configuration: set crawling settings to cover the full site, including mobile and desktop views. Enable status codes, errors, and image checks. Run a short crawl to verify scope, then run the full crawl; export results for the console and keep a backup copy for review.
-
Audit duplicates: compare titles, meta descriptions, H1s, and image alt text across their pages. Use hashing or similarity checks to group near-duplicates, then tag each cluster with a clear label in the report. Note differences in templates and their impact on user flow.
-
Identify and hold: assemble a short list of offenders and assign a hold status for pages needing review before changes. Create a cross‑section view across their sections to prioritize fixes based on traffic, conversions, and open errors.
-
Remediation workflow: apply canonical tags where appropriate and implement 301 redirects from older URLs to the chosen master page. Update internal links across the architecture to point to the master, and adjust the application templates to prevent recurrence. Keep a changelog for the client to track changes.
-
Validation cycle: run crawling again to confirm removals; verify that status codes stabilize at 200 for the master pages and that redirected pages no longer trigger duplicate signals. Validate that conversions on pages moved or consolidated show stable or improved results.
-
Reporting and guide delivery: produce a concise guide for the client with status, their changed pages, and the impact on site performance. Include an open window view of the audit results and a short, actionable checklist for ongoing maintenance.
-
Automation and ongoing checks: establish a studio workflow for recurring crawls, and set console alerts for broken links and new errors. Schedule a cadence that fits the site size, and keep a compact repository across projects. If needed, purchase tools to extend coverage without slowing running hours.
-
Quick wins and best practices: prune obvious duplicates first, fix thin or repetitive content, and ensure each page has a unique value proposition. Use a short window for rapid validation of fixes, then scale with automated checks and a consolidated image management approach to prevent open image duplicates.
Configure Crawl Scope for Large Sites: depth limits, URL parameters, and exclusions
Recommendation: Set a crawl depth limit of 3 levels for large sites; review results before increasing depth to avoid thousands of pages and to save crawl time.
Use the Tabs in Screaming Frog to keep the scope flexible. Start at the bottom of the architecture and map linking patterns, then extend to higher levels as you verify findings on a representative section of the site.
Handle URL parameters deliberately. In Configuration > Spider, enable URL Parameter Handling and filter out non-content parameters (session IDs, tracking terms, etc.). Run a quick 分析 to compare the map with and without parameters, and keep the feed clean to prevent duplicate paths.
セット exclusions to skip non-content sections. Exclude login, checkout, admin areas, and duplicate catalog paths using exact matches and wildcard patterns. Use a focused filter to suppress loops that recur through pagination or tag pages and keep the crawl focused on real content.
lean on sitemaps to guide the crawl. Open and review sitemap entries, connect them to the crawler, and read the date metadata and lastmod values to align your crawl with the most relevant pages first. This helps you reach the bottom of critical sections without chasing every parameter puff.
Run lightweight checks first and save the results. After you started a test crawl, perform quick checks on crawl depth, parameter handling, and exclusions; save a focused dataset to drive subsequent runs and date it for traceability.
Practical workflow: begin with a small, representative subset of thousands of URLs, 分析 how the structure loops between categories, and adjust the レベル of depth and parameter filters accordingly. This steady approach minimizes wasted work and supports consistent, scalable crawling for large sites.
Use Custom Extraction to Surface Duplicate Signals
Enable Custom Extraction to surface duplicate signals across pages and sitemaps. Target specific fields such as title, meta description, H1, canonical, image alt text, and JSON-LD schema blocks to reveal where repeats occur.
Choose extraction rules with XPath or regex to pull values directly from the HTML or structured data, and connect results to APIs to feed feedback into your QA workflow and to recommend changes.
Run a full crawl with the custom extraction active, then count duplicates by page and by site segment. Track which pages changed since the last run to guide fixes.
Convert signals into fixes: consolidate title tags where needed, shorten or rewrite long meta descriptions, prune thin pages, and streamline duplicate schema blocks, so changes turn into measurable improvements.
Use the following checklist to speed remediation: review pages with high duplicate counts, capture accessibility signals, and verify memory usage stays within limits for your running environment. Youre team can prioritize fixes with this view and aim for fast wins.
Export metrics to your guide or dashboard; generate a free report or API feed to monitor latest data and the impact of changes over time, then iterate on sitemaps and page groups.
| Signal Type | Source | Extraction Rule (example) | 推奨されるアクション |
|---|---|---|---|
| Duplicate title tags | Page Titles | Title tag value (e.g., //title or equivalent) | Consolidate to a consistent pattern per section |
| Duplicate meta descriptions | メタディスクリプション | meta[@name=’description’]/@content | Create unique descriptions; keep within ~160 chars |
| Duplicate H1s | Headings | First H1 on page | Ensure each page has a distinct main topic |
| Duplicate canonical | Canonical tags | link[@rel=’canonical’]/@href | Align canonical across similar pages |
| Duplicate JSON-LD blocks | 構造化データ | identify identical @type blocks | Consolidate or scope data to page groups |
Detect Exact Duplicates with Content Hash and URL Analysis
Enable content hashing during crawl to detect exact duplicates across URLs. The hash is created during extraction and reflects a complete snapshot of the page payload, including text blocks, headings, and visible content. This yields a real signal across the world.
- Configure the hash crawl: In Screaming Frog, Configuration > Spider > Advanced, enable Content Hashing. Run a full crawl to generate the Hash column along with URL, Status, Canonical, and Title data.
- Export and prepare for comparison: Export as CSV with Hash, URL, Canonical, Status, and Content Length. This complete dataset lets you perform a straightforward comparison across groups sharing the same hash.
- Identify duplicate groups: In the Hash view, groups with two or more URLs indicate exact duplicates. Note their paths (for example, product pages vs. their purchase confirmation pages or tag pages).
- Verify in-browser to confirm real duplicates: For each group, open representative URLs in a browser to compare content, including images and metadata. If two pages show the same content under different URLs, they are candidates for canonicalization.
- Decide on a resolution: If the content is truly identical, pick a canonical URL and apply a rel=”canonical” tag. If the duplication is due to variations that do not add value, implement 301 redirects or consolidate content into a single page. Screaming Frog allows you to map duplicates to the canonical and to generate redirection lists for deployment.
- Address image and media duplication: If multiple image-only pages carry the same visuals, consolidate their exposure by pointing to the same image landing or include images on the primary page with descriptive alt text. You can also add image-specific metadata to differentiate.
- Handle parameters and tags: For query strings that do not alter content, use URL parameter rules to collapse duplicates. For tag and archive pages, apply canonical to the main tag page or merge thin content into a broader overview per official guidance and seocom best practices.
Practical scenarios and actions
- Product pages with identical descriptions: set the canonical URL to the primary product page and ensure internal links point to that URL.
- Blog posts syndicated across categories: apply the canonical to the original post URL and remove duplicates from index.
- Tag and archive pages: route through the main tag page; use a canonical to avoid multiple index entries.
- Image landing pages: choose a single landing page as primary or link from duplicates to the main page; adjust image alt attributes for unique value.
- Parameter-driven content: map non-changing parameters so duplicates do not appear in index.
Overview: The hash-based approach gives a fast way to spot exact duplicates across the complete crawl. The latest guidance from seocom and the official Screaming Frog docs supports canonicalization and redirects to improve user experience and crawl efficiency. After identifying duplicates, you gain a clean set of pages to optimize for user engagement and images. Using this method across the world helps reduce wasted crawl budget and improves indexation for their content and their images.
OpenAI-assisted checks: For a small sample, run an openai-powered sanity check to confirm that the chosen canonical path preserves user intent and ensures that linked pages maintain their value as they appear in browser interactions.
Tips for teams: Keep a tags-driven audit trail, map internal links to the canonical URL, and export periodic hashes to monitor changes across brands or marketplaces. This approach is great for maintaining an official, consistent structure while supporting real user needs and purchase flows.
Assess Duplicates via Title, Meta Description, and H1 Comparisons

重複監査を今すぐ実行し、タイトル、メタディスクリプション、またはH1が同一のページを削除します。すべてのページのタイトル、メタディスクリプション、およびH1を収集し、それらの結果を正規ソースでグループ化することで、セクション間の相殺を明らかにします。
チェックリスト:タイトルは50~60文字、メタディスクリプションは150~160文字、H1は70文字以内になるように。完全一致の重複を最初にフラグし、次に1つまたは2つの主要キーワードを共有する類似重複をフラグします。これらのチェックは、クローリングのオーバーヘッドを削減し、SERPの明確性を向上させ、アクセシビリティとユーザーの意図を示すシグナルをサポートします。
重複状態の判定: 混雑したページでの完全一致の重複は High と判定; 同じトピック内での類似重複は Medium と判定; 関係のない重複は Low と判定します。これにより、修正の優先順位が明確になり、ステークホルダーやチームの概要で進捗状況が可視化されます。
通常の使用法:コンテンツが同じページがペアになっている場合、非マスターページを正規タグを介してマスターページに誘導します。両方のページを保持する必要がある場合は、ページが相殺されないように、およびインデックスがそれらの役割を区別できるように、異なるH1とメタディスクリプションを確保してください。
セキュリティとアクセス:認証が必要なページについては、テストアカウントを使用して安全なクロールを有効にし、これらのページが監査に貢献し、安全でない状態のままにならないようにしてください。認証により、盲点や誤解を招くステータス信号を導入することなく、完全なデータを収集できます。
修正計画:canonicalページに301リダイレクトを実装する、タイトルと説明文を固有の目的に反映するように書き換える、H1をページコンテンツと一致するように調整する、および重複コンテンツブロックを削除する。内部リンクをcanonical URLに更新し、シグナルの希釈を避けるために画像altテキストを見直してください。
品質チェック: 同じ設定でクロールを再実行し、重複が減少することを確認します。画像、内部リンク、ソーシャルウィジェットが、カノニカルページを指していることを検証します。リダイレクトのコードパスを検査して、ステータスを一貫して保ちます。
フレームワークとガイダンス: seocom の指示とアクセシビリティガイドラインに準拠し、サイトの成長に合わせて拡張できる柔軟なテンプレートを使用し、変更を集中型のフレームワークに文書化して、チームがページ全体でパターンを再利用できるようにします。
概要と指標:修正後のページ速度の改善状況を追跡し、更新されたページのエンゲージメントを監視します。関係者向けの簡潔な概要を作成し、進捗状況と残りのギャップを示します。影響を検証するために、источник、サーバーログ、およびソーシャルシグナルからのデータを使用します。
修正の実施: リダイレクト、カノニカルタグ、およびページ内メタ修正
移動したページに対しては永続的な301リダイレクトを適用し、各ページのマークアップにカノニカルタグを設定して、インデックスしたい一意のバージョンを指してください。この変更により、信号が統合され、エラーが最小限に抑えられ、ユーザーはデバイス間で同じコンテンツを常に参照できるようになります。
Screaming Frog での診断リダイレクト: 4xx/5xx を特定し、チェーンをマッピングし、最終的なターゲットでデータベースを更新します。リダイレクトチェーンが 3 段階まで短縮されていることを確認してください。修正したら、中間 URL を削除して、googlebot が正規ページに到達するようにします。動的ページの場合、クライアント側の JavaScript リダイレクトではなく、サーバー側の 301 を実装します。これにより、最新のシグナルがルートドメインに確実に到達します。
マークアップにおけるカノニカル: 位置 in the head of every page. The canonical must be the unique, indexable version, and it should be absolute. Use selectors to verify presence of the canonical tag in the DOM and ensure it matches the URL in your database. In SPA or JavaScript-driven pages, ensure the canonical is present in server-rendered HTML or via proper markup injection. This unlocks consistent indexing, avoids confusion, and improves crawling efficiency for googlebot.
ページ内メタデータの修正:タイトル、メタディスクリプション、見出しを現在のコンテンツに反映させ、文法やエラーを修正し、ユニークで説明的なマークアップを確保します。最新のSEOガイドラインに沿い、キーワードスタッフィングを避けてください。修正されたメタデータをデータベースに更新し、変更がアナリティクスイベントとレポートに反映されるようにします。これにより、検索者はコンテンツを一目で理解でき、離脱リスクを軽減できます。
ヒント、練習、そしてガバナンス:ライセンス承認済みのツールセットで変更を把握し;CMSや分析ツールとの統合を実装して、一貫性を維持してください。変更履歴とワークフローを使用して、誰が、何、いつ変更したかを記録し、チームが問題を迅速に診断できるようにします。コツは、高レベルの戦略と正確なセレクターを切り替えて異常を検出し、フロッグ監査が実際のユーザーの動作を反映することを確認することです。
最終検証: 変更をデプロイしたら、永続的なリダイレクトが保持されていること、カノニカルリンクがユニークなページに解決されること、およびページ全体のメタデータ改訂が最新のクローリングデータに反映されていることを確認するために、別のクローリングを実行します。 Googlebotの応答、ウィンドウタイミング、およびアナリティクスダッシュボードを確認して、インデックス作成とトラフィックの改善を確認します。このアプローチは、サイトの健全性を向上させ、データベース全体の重複コンテンツを削減します。
究極のScreaming Frogガイド2025 – クロール、監査、SEOを最適化する">