Blog
Jak Zbudowaliśmy Nasz System Badań Niezalicznymi Agentami – Architektura i Kluczowe WnioskiJak Zbudowaliśmy Nasz System Badawczy Wielu Agentów – Architektura i Kluczowe Lekcje">

Jak Zbudowaliśmy Nasz System Badawczy Wielu Agentów – Architektura i Kluczowe Lekcje

Alexandra Blake, Key-g.com
przez 
Alexandra Blake, Key-g.com
12 minutes read
Blog
grudzień 10, 2025

Recommendation: Zacznij od minimalnego, modularnego rdzenia i czystego interfejsu dla wszystkich agentów. Zbuduj a rój wokół centralnego koordynatora, aby umożliwić koordynacja i przewidywalne przepływy danych. Zablokuj wersjonowaną umowę dla wiadomości i a fallback ścieżka, dzięki której eksperymenty pozostają możliwe do uruchomienia, gdy komponenty ulegną zmianie.

Zaprojektowaliśmy warstwową architekturę: lekką interfejs warstwę, kolejkę komunikatów oraz rdzeń symulacji. Każdy agent działa jako oddzielny proces, komunikując się poprzez kanał publikacji-subskrypcji. W testach z 32 agentami, średnie opóźnienie komunikatów utrzymywało się poniżej 25 ms na localhost, a przepustowość rosła liniowo do 128 wiadomości na sekundę; powyżej tego, konflikt wzrastał, chyba że wprowadziliśmy algorytm oparty na ciśnieniu zwrotnym- strategie i routing uwzględniający kolejki. Rezultatem jest a zbudowane system, który zachowuje responsywność podczas długotrwałych sesji.

Projektując system, zastosowaliśmy się do techniki takie jak modularne moduły polityki, contraforce fallbacki, i konsensus między agentami, w tym różnorodne źródła danych, aby uniknąć nadmiernego polegania na pojedynczym źródle. Użyliśmy источник dane do walidacji. Testowaliśmy dostępność z wykorzystaniem NVDA na stronie internetowej. interfejs i zintegrowaliśmy zabezpieczenia w stylu Microsoft, aby zapewnić bezpieczeństwo eksperymentom. Utrzymaliśmy również a subtelny rozdzielenie odpowiedzialności, dzięki czemu zespoły mogą wymieniać algorytmy bez ingerencji w rdzeń.

Kluczowe wnioski: utrzymuj komponenty, które zostały zbudowane, jako odseparowane, utrzymuj bazę do sprawdzania regresji i dokumentuj kontrakty interfejsów w sposób dokładny. Zmierzyliśmy czas zbieżności dla podstawowego zadania planowania: 60 ms z koordynacją rojową, w porównaniu z 190 ms z pojedynczym agentem ścieżki. W celu ochrony eksperymentów, uwzględniliśmy flagi funkcji i mechanizm powrotu do poprzedniej wersji jako standardową praktykę. The источник częścią tych decyzji jest połączenie wywiadów z ekspertami i empirycznie zweryfikowanych danych.

Dla współpracy zastosowaliśmy zasady w stylu Microsoft: flagi funkcji, stopniowe wdrażanie i lekki proces recenzji, który pozwala na wprowadzenie zmian i zapewnia ich możliwość audytu. Dopasowujemy się do wytycznych Microsoft, aby zapewnić kompatybilność między zespołami, i zbudowaliśmy a interfejs dostosowywalne do zewnętrznych badaczy, z testowaniem NVDA w celu zapewnienia dostępności. Projekt interfejsu obsługuje inne łańcuchy narzędzi, dzięki czemu zespoły mogą podłączyć swój preferowany przepływ pracy bez przerywania podstawowego modelu koordynacji.

Architektura i kluczowe wnioski dla systemu badawczego z wieloma agentami

Zastosuj modułowy, sterowany zdarzeniami rdzeń, który koordynuje rój agentów z solidną warstwą asynchronicznej komunikacji, aby zapobiec wąskim gardłom i umożliwić skalowalną eksperymentację. Stos wnioskowania z obsługą nvda działa na wysoce równoległych GPU, z gpt-4o-mini jako podstawowym backendem do zadań planowania i analizy oraz mniejszym modelem językowym do szybkiej iteracji. W typowych wdrożeniach osiągnij czas wywołań między agentami poniżej 20 ms i obsługuj 1000+ współbieżnych interakcji w współdzielonym obszarze roboczym. Przede wszystkim utrzymuj ścisłe oddzielenie planowania, wykonywania i oceny, aby ograniczyć przepływ danych i decyzji.

Utrzymywanie przejrzystych śladów audytu wspomaga odtwarzalność i umożliwia uczenie się na podstawie przeszłych eksperymentów.

  • Core orchestrationlekkie, świadome zależności narzędzie do planowania, które modeluje grafy zadań, wymusza limity czasowe i rejestruje pochodzenie każdej decyzji.
  • Subagenciwtykowe moduły, takie jak subagent1_name i inne; każdy wyposażony w zdefiniowany interfejs (initialize, step, edit) w celu promowania wymiennego.
  • Warstwa wiedzy i danychwspółdzielona, wersjonowana baza wiedzy z historią pochodzenia, tagami zasad i ścieżkami audytorskimi, aby wspierać odtwarzalność.
  • Model i stos językówwsparcie dla wielu backendów (gpt-4o-mini, lokalne Transformery itp.), z silnikiem zasad, który wybiera najlepszy backend dla każdego scenariusza i potrzeb językowych.
  • Komunikacjaasynchroniczny bus komunikatów z tematycznym pub/sub, żądanie-odpowiedź dla krytycznych zadań i kontrolą ciśnienia wstecznego w celu stabilizacji kolejek.
  • Ocena i opinia zwrotnaautomatyczne ocenianie wyników, połączone z informacją zwrotną od ludzi w celu podejmowania decyzji o dużym znaczeniu; system rejestruje decyzje w celu informowania przyszłych iteracji.

Projektowanie i dostosowywanie agentów

  • Subagent1_name specjalizuje się w pobieraniu danych, normalizacji i ekstrakcji cech; normalizuje dane wejściowe do wspólnego schematu i emituje ustandaryzowane zdarzenia dla zadań dalszego przetwarzania.
  • Pozostałe podagentów przyjmują ten sam interfejs i mogą być wymieniane bez wpływu na pozostałą część stosu.
  • Dostosowywanie dostosowuje zachowanie agenta w zależności od scenariusza poprzez modyfikacje zasad, preferencje językowe i wybór modelu bez konieczności wprowadzania zmian w kodzie.

Praktyki operacyjne i kluczowe wnioski

  1. Utrzymuj zwarty rdzeń i wyposaż agentów pomocniczych w niezależne cykle życia, aby zapobiec kaskadowym opóźnieniom.
  2. Keep latency visibility at the edge; monitor 95th percentile latency and cap backlogs to avoid spikes.
  3. Adopt an explicit feedback loop that translates human observations into model prompts and policy updates.
  4. Note the importance of versioned prompts and prompt-edit templates to ensure consistent behavior over time.
  5. Plan adoption in stages: pilot with small scenarios, then scale to broader experiments with governance checks.

Agent Design and Role Distribution Across the System

begin by assigning dedicated, task-focused agents with explicit roles and a shared protocol for communication. Each agent performs a distinct function: perception, planning, execution, and logging. Use a stateful memory model stored locally to support sessions and allow resumption after interruptions. Pair a clear description-driven interface with a consistent voice across agents to maintain predictability and speed up onboarding of new components. annalina coordinates the workflow by evaluating the needs of the current task set and directing work to the appropriate module, tracking impacts on throughput and complexity.

same voice across modules reduces cognitive load and shortens integration cycles. The distribution logic uses a description of each role so operators and future components understand intent without rereading code. The workflow assigns tasks based on the stateful context of the current session, with locally cached data to reduce latency and avoid unnecessary calling of external services.

Safeguards guard against disrupting calling of external services. If a task would interfere with ongoing sessions, the system queues it and routes it through the coordinator. All transitions occur gracefully; stemtologys capture per-session traces for audit while still maintaining low latency.

Allocate minor tasks to lightweight agents to keep the system responsive. These agents handle data collection, normalization, or routine checks, leaving heavier reasoning to the planner. The distribution logic considers current workload and the needs of each session to minimize queueing delays and maintain fairness across users. annalina coordinates role assignments as topology changes, and stores outcomes in stemtologys for future optimization.

Inter-Agent Communication Protocols and Message Semantics

Inter-Agent Communication Protocols and Message Semantics

Start with a simple, shared message schema that drives reliable inter-agent exchanges across a swarm of agents. Define a fixed header (type, version, source, destination) plus a variables map for dynamic fields, and keep payloads compact and self-descriptive. This foundation, based on openai and other agentic components in solidcommerces platforms, coordinates computers and chatbot workflows with a single, consistent format for recommendations, and supports image attachments. This framework will drive reliability.

Choose a protocol pattern that matches workloads: publish-subscribe for events and state changes, plus a request-reply channel for commands. Provide an option to blend approaches for coordinated tasks, and use correlation IDs to trace flows across services.

Semantics matter: standardize intents, actions, states, and outcomes. Use a canonical ontology and explicit data types; tag payloads with content-type and schema-version; include time stamps, provenance, and confidence signals. Aligning semantics helps all agents interpret results consistently and reduces debugging time during enterprise-grade operations.

Support rich data shapes: encode images with lightweight codecs, carry structured recommendations, and version schemas to enable backward compatibility. Ensure that messages carry enough context to support autonomous decision-making without requiring bespoke parsers at every hop.

Governance and deployment: apply contract validation, rigorous testing, and clear rollback paths. Track metrics such as latency, message size, and success rates to guide optimizations, and define access controls and data governance policies. With automating pipelines and swarm coordination, teams leveraging solidcommerces based architectures can scale rapidly, including chatbot workflows and enterprise-grade integrations, therefore improving throughput and reliability.

Data Flow, Provenance, and Reproducibility in Experiments

Pin dependencies with exact versions and record a unique run_id together with complete provenance in a metadata store before launching any experiment.

Design the data flow to trace every input from its источник to every computed output. Map stages: input → preprocessing → multiagent controllers → simulation steps → aggregation → results. Use a verbose log during development and switch to concise logging in production, while still capturing full provenance. Ensure environments are isolated per run to prevent drift and to enable repeatable setups across machines.

  • Provenance schema includes run_id, timestamp, источник, input_hash, config, language, languages, metadata, environment_spec, code_version, dependencies_versions, agent_patterns, multiagent and parallelization flags.
  • Store provenance in a central repository that records inputs, intermediate states, outputs, and evaluation metrics as immutable entries. Completed runs remain in the store for auditing and re-run requests.
  • Capture input details: input data sources, sample values, and input schemas; hash inputs to detect changes; tag each entry with a keyword for quick filtering.
  • Document environments explicitly: language versions, runtime runtimes, libraries, and container or VM identifiers. Use install-time reproducibility artifacts like environment.yml or requirements.txt with pinned versions.
  • Record multiagent and parallelization settings: agent roles, interaction pattern, communication languages, and concurrency controls. Capture the exact pattern of agent interactions to reproduce emergent behavior.
  • Preserve metadata alongside results: run_status, start_ts, end_ts, resource usage, and any randomness seeds. Include a human-readable explanation of decisions made during the run for context and auditability.
  • Account for anthropic considerations: log prompts, human inputs, or filters that influence agent behavior, so that safety and alignment checks can be reproduced and evaluated across environments.

Recommendations for reproducibility focus on speed and ease of re-run without sacrificing accuracy. Use caching for reusable intermediate results, and store container images or image digests to avoid environment drift during repeated executions. Maintain a lightweight heartbeat to signal progress without overwhelming logs, while ensuring enough detail exists to reconstruct the entire experiment.

Language and metadata play a central role in traceability. Track language used by each agent, the metadata schema version, and the alignment checks performed. This approach keeps multiagent experiments intelligible and capable of independent verification by any team member.

  1. Install a reproducible runtime: create and publish a container or virtual environment image; pin all dependencies; store the image digest with the run_id to guarantee identical environments across machines.
  2. Capture input and configuration at start: save a snapshot of input data, input_schema, and the full configuration. Compute a hash of the input and a separate hash of the config for quick future comparisons.
  3. Record languages and provenance: log agent communication languages, library versions, and the exact code commit. Include a readable summary of what changed since the last run to support incremental optimization.
  4. Log the execution pattern: document the multiagent setup, interaction graph, and parallelization scheme. Mark the completion of each stage (completed) along with time stamps for precise timing analysis.
  5. Maintain a keyword-tagged audit trail: assign a keyword to the experiment to ease filtering in large suites and to link related runs across environments and language variants.
  6. Ensure end-to-end reproducibility: provide a script or command that fetches the exact image, input, and config and replays the run deterministically. Validate outputs against a predefined set of metrics to confirm equivalence.

When implementing these mechanisms, prioritize patterns that generalize across many tasks and environments. A robust provenance graph enables verbose debugging when needed, while structured metadata supports automated checks and faster iterations. This balance between rigorous data flow, precise provenance, and practical reproducibility yields experiments that are easy to audit, easy to reproduce, and ready for optimization across languages, agents, and hardware setups.

Scalability, Orchestration, and Resource Scheduling Strategies

Deploy agents as Python-based microservices on Kubernetes and enable horizontal pod autoscaling with a target CPU utilization of 60-70% and a queue-length threshold of 200 tasks per pod, with min 4 and max 128 pods per deployment. This setup delivers speed during spikes and keeps idle costs under control, while letting you adjust scaling continuously as workloads grow.

Implement a resource scheduling policy that matches tasks to the right pool based on factors such as data locality (blob storage), data size, memory pressure, and inter-agent communication costs. Track queue depth, task size, and agent load continuously, and adjust allocations in real time to prevent bottlenecks and maintain throughput for your research workloads, making results meaningful.

Orchestrate with a Python-based control plane that uses a lightweight scheduler to assign jobs to specialized agent groups, leverages message queues (RabbitMQ, Kafka), and supports preemption when higher-priority tasks arrive. Use environment-aware policies to avoid cross-environment contention and to keep experiments reproducible across environments. Include reasoning_ai_agentpy and stemtologys as reference models to guide decisions; this approach has passed experimental validation and helps compare approaches with others.

Monitoring and resilience: instrument metrics for speed, queueing latency, and failure rates; implement retries with exponential backoff; snapshot results to blob storage with versioning; run controlled tests and compare against generic baselines and news from industry benchmarks to drive tuning. Use continuous data to inform policy updates and keep dashboards meaningful for researchers.

Collaboration and governance: share results across teams and with businesses; letting the user provide feedback on scheduler behavior; align with data governance and privacy policies; run pilots across multiple environments; reinforce your research with collaboration loops and input from users.

Monitoring, Testing, and Reliability Practices for Multi-Agent Workflows

Implement a live monitoring plan that maps to outcomes across multi-agent workflows. Define a two-tier readiness approach: a lightweight in-process monitor during execution and a post-run evaluation that reviews experiment results within minutes after completion. Use the keyword signals from teamweb_search_agent, prototypes, and crewai modules to compute health and reliability metrics.

Adopt approaches including scripted experiments, backtests against historical data, and targeted probes that exercise the mechanism of coordination among agents. Maintain a prototypes log and an experiment plan that records hypothesis, inputs, and outcomes. Specifically, tie experiment results to application-level outcomes to justify changes; use openai as a reference implementation; OpenAI describes similar baselines for prompt-driven coordination; keep prototypes under a versioned repository.

Reliability rests on latency budgets, deterministic retries, and modular fallbacks. Implement a mechanism for failure handling and graceful degradation that powers the workflow. For financial and other similar applications, simulate fault scenarios to measure readiness above and below thresholds. Use labels and keyword keys to classify incidents and produce actionable outcomes for teams.

Communication protocol includes weekly minutes review, daily status updates for the team, and a formal post-mortem linked to learning outcomes. The plan requires collaboration between developers, researchers, and operators to ensure alignment with outcomes and uses. Specifically, document decisions with a keyword index and attach minutes to the project wiki.

Metric Source Cadence Notes
Latency Agents log stream 2 min Cel < 200 ms for teamweb_search_agent; alert if above threshold
Failure rate Silnik wykonawczy per run Śledzenie ponownych prób i mechanizmu zapasowego
Dopasowanie wyników Wyniki eksperymentów w porównaniu z planem działania per sprint Ocena, czy wynik odpowiada planowi
Gotowość na incydenty Platforma obserwabilności w razie potrzeby Symuluj scenariusze incydentów; oceń gotowość powyżej progów.