Блог
How to Learn to Work with a Neural Network from Scratch and Write Prompts Correctly Using a FormulaHow to Learn to Work with a Neural Network from Scratch and Write Prompts Correctly Using a Formula">

How to Learn to Work with a Neural Network from Scratch and Write Prompts Correctly Using a Formula

Александра Блейк, Key-g.com
на 
Александра Блейк, Key-g.com
12 minutes read
IT-штучки
Сентябрь 10, 2025

Recommendation: Build a tiny neural network from scratch in Python and use a single формулу to craft prompts. This is your genesis of how weights update and how prompts steer outputs, with a vibrant dataset to test ideas. The задача is concrete: implement a 2–3 layer network, run a compact training loop, and measure error on a small validation set. Людей пишут that progress comes faster when you keep a дополнительная checklist and a concise set of details for each experiment.

To apply the формулу reliably, map every task to a Prompt = Task + Context + Constraints + Style + Input + Output. Use a шаблон (template) you reuse for each запросы (запросы) so the results stay comparable. Start with simple tasks and scale gradually, logging the inputs and outputs for each generation to inspect where improvements are needed.

The learning path is hands-on: set up a minimal Python environment, create a small dataset, and build a basic training loop. Я загружаю a subset of data (которых labels) into memory, run forward passes, and compute loss. Iterate by changing one element at a time–activation, learning rate, or batch size–and compare results on the hold-out portion. Этот подход keeps experimentation focused and helps you see clear cause-and-effect relationships.

Keep prompts compact and repeatable while exploring вариации: initial prompts for a simple task, then variants that test a constraint or style. Use промтов to compare how the model responds under different contexts, and document which шаблон yields the most stable outputs across запросы. You’ll build a reliable workflow, where каждый новый запрос is guided by the same шаблон and формулу, reducing guesswork.

In practice, you’ll accumulate генераций and details you can audit later. Build data scenarios around кошек and одежды to illustrate how the model handles visual-like prompts, captions, and descriptive text. Track metrics such as loss, accuracy, and output coherence, and annotate where the model succeeds or struggles. The genesis of your system appears in these iterative rounds, and you’ll learn which parameters most influence quality and consistency. Итоге this process, you gain a repeatable method for prompt design and a solid intuition for how small changes ripple through the network.

этот approach keeps you ready for real-world tasks: you can adapt the шаблон to multiple domains, switch datasets, and refine the формулу to fit new constraints. When you’re ready, you’ll share an organized portfolio of прототипы, comparisons, and annotated генераций that demonstrate mastery of both neural work and prompting discipline. готова to apply what you’ve learned to fresh problems and scale your experiments with confidence?

Define a Clear Learning Goal and a Minimal Neural Network Scope

Have a clear задача: иметь a minimal net that solves a simple task and document success with a fixed prompt formula. Set this goal as the anchor for every decision today. This approach keeps scope tight, makes progress measurable, and helps you move from theory to practical prompts. Read the guidance from studyai to align input, output, and evaluation. Today, pick a small dataset and colors for visualization to simplify debugging. The момент to reach нужные metrics will come once you stabilize training on a toy task. Do not chase постимпрессионизм complexity; keep the idea focused on one idea, one dataset, and one formula.

Set a Specific Learning Goal

Set a Specific Learning Goal

Clarify the problem with a single, concrete objective and a realistic deadline. Define metrics such as accuracy and loss, and pick a threshold that signals success (for example, 70% accuracy on a hold-out set). Use читать guidance to confirm the prompt formula yields consistent inputs and outputs. Specify наконец the нужный токены and features you will track, and keep the plan to сегодня’s capabilities. Capture the момент when the model reaches the target and adjust only after you’ve logged the result. Keep the scope одной задачe and avoid adding extra datasets or tasks until the goal is met.

Define a Minimal Neural Network Scope

Limit to a compact architecture: two layers, small hidden size, and a clear input dimension that matches the chosen токены. Focus on one dataset, one task, and one training loop. Use colors to visualize progress, but avoid overcomplicating the prompt with unnecessary context. Emphasize how the model learns simple relationships and how the prompt formula guides the response. By keeping постимпрессионизм-level complexity out, you will see the core behavior emerge faster and with clearer debugging signals. The result is a reproducible baseline you can iterate on without drift or feature creep.

Element Definition Пример
Learning Goal Specific, measurable target and deadline 70% accuracy on a 200-sample hold-out within 2 days
Network Scope Minimal architecture and data features 2-layer net with 4 hidden units; binary task
Data & Tokens Use only needed tokens and a tiny dataset 100 samples; нужные токены highlighted
Prompts Fixed formula to elicit consistent output Prompt: “Given features X, classify Y”
Evaluation Per-epoch loss and final accuracy Best checkpoint recorded and compared

Set Up a Reproducible Python Environment for Neural Network Experiments

Start with a clean система by creating a dedicated project folder, initializing a Git repo, and activating a virtual environment using conda or venv. Pin Python to a specific version (for example 3.11.4) and lock dependencies with environment.yml (conda) or requirements.txt (pip). This creates a запись of the exact configuration so каждый участник может reproduce it на своей машине и начать работать самостоятельно. For visualization, plan colors palettes in advance to ensure consistent освещение of results across datasets.

Dependency management uses a single source of truth. Use Poetry, Pipenv, or a pinned requirements.txt to lock versions. Ensure the interpreter is stable by using pyenv or conda to fix Python across platforms; this approach используется командами, которым важна reproducibility, especially for распознавание задач where consistency matters. Document the exact commands used to recreate the environment and store the file in the repository for easy re-setup.

Determinism matters for comparisons. Set seeds and deterministic operations: numpy.random.seed(42), random.seed(42), and torch.manual_seed(42). Enable deterministic algorithms in PyTorch and avoid non‑deterministic CUDA ops where possible. This ensures stable results; каждый запуск имеет повторяемое поведение, aiding сравнение функций и результатов. When working with sensitive models, note any unavoidable nondeterminism in a dedicated section of the article and keep the baseline clean.

Data handling and image pipelines require clarity. Fix preprocessing steps, deterministic augmentations where possible, and record the entire image processing chain. Use robust image loading and ensure functions that operate on изображений are deterministic. To accommodate listeners in иным языках, document the pipeline in bilingual form where appropriate, and store a запись of the data split and seed to reproduce outputs. This approach helps клиентов evaluate consistency and reduces drift across environments.

Experiment tracking and reporting empower teams. Maintain a local ledger of runs with timestamps, environment hash, and hyperparameters. Provide clear освещение of results in plots and summaries, and keep notes accessible to люди и клиенты (клиентов). Tie each run to the exact environment state and data version, so every stakeholder can audit the workflow and reproduce the outcomes documented in this статья.

Practical steps to start now: create environment.yml or requirements.txt, declare a baseline random seed, and test a short training pass to verify reproducibility. Name the baseline project акira (акира) in your docs, and reference a config file named мэпплторп.yaml to pin dependencies and environment details. If you plan to продать the approach to clients, provide a transparent, minimal reproduction path with a ready-to-run script and a concise запис of steps. For initial validation, run a quick visualization of an image sample to confirm colors and imaging functions behave as expected, and ensure every изображение path aligns with the documented pipeline.

Implement a Tiny Feedforward Network: Forward Pass, Activation, and Loss Function

Implement a Tiny Feedforward Network: Forward Pass, Activation, and Loss Function

Start with a two-layer tiny network to validate the forward pass and loss. The задача here is to implement forward pass, activation, and a loss function, and then expand once you have solid results. The network генерирует predictions directly from input features, so use a small colors palette to visualize activations and keep освещения simple to avoid noise. This approach creates a calm атмосфера for debugging, helping you see how каждый вычисление maps to the resulting задача.

Plan the forward pass like this: x is in R^n, W1 in R^{h×n}, b1 in R^h, a1 = σ(W1 x + b1). Then W2 in R^{m×h}, b2 in R^m, z2 = W2 a1 + b2, a2 = σ(z2). The loss compares a2 to target y in R^m using MSE: L = 0.5 ||a2 − y||². For classification, switch to cross-entropy. Use напрямую computations to verify each step, and keep the focus on the flow rather than fancy tricks. The goal is a clear, practical solution with the most Нужные details available today.

Core equations and a tiny numeric example

Example: n = 2, h = 2, m = 1; x = [0.5, −0.2], W1 = [[0.5, −0.3], [0.2, 0.7]], b1 = [0, 0], W2 = [0.4, −0.6], b2 = [0]. z1 = W1 x + b1 = [0.31, −0.04], a1 = ReLU(z1) = [0.31, 0]. z2 = W2 a1 + b2 = 0.124, a2 = sigmoid(0.124) ≈ 0.532. Target y = 0.60; L ≈ 0.5 × (0.532 − 0.60)² ≈ 0.0023. This single example shows how the forward pass translates to a concrete result, with токена mapping helping track contributions at each layer. Цветом графика можно отметить, какие веса активируются и как изменяются значения на каждом шаге.

Derive a Simple Prompt Formula: Structure, Variables, and Rules

Start with a four-part prompt template: Goal, Subject, Context, and Constraints. This простой подход прямо направляет нейросетям генерировать картинку, которая удовлетворяет тематики клиентов. By filling each part with concrete values, you create a repeatable pipeline for midjourney and artstation tasks, and you can compare results quickly. Этот подход добавляет дополнительная ясность и помогает достигать того решения быстрее. Keep phrasing in самом простом формате, and you can tweak fields напрямую to test how small changes shift the final image. Place the core rules в месте, so the team works from one clear промта and reduces проблем with ambiguity. This clarity will help нейросетям deliver outputs, которые клиенты найдут полезными.

Structure

Goal: one sentence that states the intended outcome. Subject: the main object or character. Context: setting, lighting, and mood. Constraints: style, aspect ratio, resolution, and references such as midjourney or промта. Example: Goal: produce a мозговой concept image for клиентов; Subject: a humanoid detective; Context: neon city at night with cinematic lighting; Constraints: 16:9, 8k, photorealistic, in the style of хосода, suitable for нон-фикшн visuals, ready for midjourney and промта deployment on artstation.

Variables and Rules

Variables you control include тематики, mood, lighting, color palette, composition, camera angle, and technicals like resolution. Rules: keep each field concise (1–2 phrases), end with промта, and include нужный references to midjourney and artstation. Ensure the output matches targeted клиентов. If you want другой стиль, try другой набор and compare outputs; такой подход helps optimize for нон-фикшн tasks. Place the final промта at the нужном месте to standardize workflow; this мозговой vibe comes from adding specific details about intent and environment.

Turn the Formula into Prompt Templates: Syntax, Examples, and Constraints

Lock the base formula and convert it into a family of templates. This helps люди, who work with нейросети, stay consistent across подписке workflows and scales prompts without duplicating effort. Use a clear assemble rule: idea + style + palette + medium + constraints. Treat fields as placeholders: {idea}, {style}, {palette}, {medium}, {constraints}. Keep the language sharp, concise, and repeatable at a fixed level of detail to avoid output drift. If you want to expand coverage, дополняйте одну core template with расширить constraints while maintaining общий structure.

  • Syntax principles
    1. Base formula blueprint: idea + style + palette + medium + constraints.
    2. Placeholders map to journalist-like clarity: {idea} describes the concept, {style} names the artistic approach, {palette} sets color guidance, {medium} signals the output type, {constraints} governs length, tone, and format.
    3. Maintain a single общий framework so some prompts can be merged under подписка tiers without losing consistency.
  • Templates to deploy
    1. Core prompt (text-only): “Create an idea in a chosen style with a minimal palette, while meeting given constraints.”
    2. Extended prompt (text-to-image focus): “Generate a stunningly detailed image of {idea} in {style}, using a neon palette, {palette}, with sharp lines and a minimal composition, in a 16:9 aspect. Constraints: {constraints}.”
    3. One-click prompt (neutral tone): “Describe {idea} in {style} with {palette} tones. Output length: {constraints}.”
  • Medium-specific cues
    1. For текст-изображение (текст-изображение) tasks, append medium hints: “visual, high-contrast, poster-like” to push sharp results.
    2. For нейросети outputs, specify level of detail and context: “одна concise paragraph” or “multi-panel layout” to guide generation.
    3. Reference minimal style and Banksy influence as a vibe note: include бэнкси in parenthetical cue to clarify mood.
  • Examples
    1. Example 1 – текст-изображение:

      Prompt: Generate a stunningly detailed image of {idea} in постимпрессионизм style, with neon accents and a minimal composition, sharp edges, and Banksy-like edge (бэнкси). Use a 16:9 ratio; width 1920, height 1080. Constraints: {constraints}.

    2. Example 2 – нейросети description:

      Prompt: Provide one paragraph description of {idea} in {style} with {palette} tones. Keep it concise (up to 120 words). The goal is a clear concept transfer for downstream tasks. Constraints: {constraints}.

    3. Example 3 – общая схема:

      Prompt: {idea} described in {style} with a {palette} palette, tailored for подписке usage. Output: {constraints}. Include a small contextual note: что-то about the intended audience (люди) and место where it applies (месте).

  • Constraints and guardrails
    1. Keep один основной формат per template family to avoid drift.
    2. Limit length for text outputs (не более одной-двух предложений или около 120 слов).
    3. For images, cap resolution to 1920×1080 or 2048px on the long edge; specify aspect ratio clearly (например, 16:9).
    4. Enforce tone and style: sharp, minimal, and visually driven; avoid verbose narration.
    5. Allow some flexibility: иногда small deviations in palette or mood are acceptable if the core idea remains intact.

Run Quick Experiments: Data, Metrics, and Iterative Tweaks

Recommendation: start with a 1,000-sample baseline using a simple 2-layer network. Target 70–72% accuracy, validation loss under 0.9, and latency under 60 ms per item on CPU. Log запросов and create an индекс of ответов to map input to output; this clearly reveals anatomy of the задача and which какая характеристика drives errors. Name the first runs dragon-01 and genesis-01 to compare trends, keep each variation small so you can see concrete changes ниже. Share results with моим teammates to align on what to test next. Results явно show how many случаев and which features move metrics, никого bias aside.

Baseline Setup

Data: 1,000 training samples, 200 validation; if you work with apparel, include a clothing (одежды) subset and a simple картинку 28×28 to keep compute light. Model: 2-layer MLP with 128/64 units; activation ReLU; optimizer Adam; learning rate 0.001; batch 32; epochs 3. Metrics: accuracy, precision, recall, F1, cross-entropy loss on validation; latency measured on the engine; report time per batch in milliseconds. To understand feature influence, keep a compact масса of features and observe how accuracy shifts when you drop or add features, так что можно видеть важные сигналы по задаче.

Fast Experiment Plan

Run three quick tweaks and compare: 1) learning rates 0.0005, 0.001, 0.005; 2) batch sizes 16, 64, 128; 3) simple augmentation or normalization (with or without). For each run, log the same metrics plus the number of problematic запросов and whether индексы обновляются в ответах for improvements. After each trial, see which классы see gains and adjust weight mass accordingly. Clearly name runs (e.g., dragon-02, genesis-02) and use those results to refine prompts and data slices for the тематики первого типа задач. Вставляем эти tweaks прямо в цикл обучения, чтобы результаты были воспроизводимыми и понятными для работы команды и для визуализации вопросов.

Debug Prompts and Training Loops: Common Pitfalls and Fixes